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In this document, we provide more details for the
method, experiments, dataset, and more qualitative results,
as an extension of Sec. 3 and Sec. 4 in the main paper. Please
also refer to the video demo for dynamic relighting results,
comparison, ablation study, and more results.

A. Method and Experiment Details
We demonstrate that during training, instead of directly us-
ing albedo and shading maps, we train with relit images us-
ing different lighting augmentations. By leveraging a con-
ditional diffusion model, our approach can implicitly disen-
tangle lighting and appearance from the input image, learn-
ing to generate relit images and bypassing the need for a
preprocessed de-lighting process.

A.1. Relighting and Harmonization Diffusion Net-
work (Sec. 3.2)
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Figure 1. Relighting and Harmonization diffusion model training
and denoising pipeline.

As shown in Fig. 1, which includes the diffusion model
training process and denoising (sampling) process for our
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fine-grained relighting. During the training process, we
follow the same Stable Diffusion architecture as [1], and
both Lighting ControlNet and Motion ControlNet architec-
ture are followed by [19]. Stable Diffusion model adopts
a U-Net [12] architecture comprising an encoder, a middle
block, and a skip-connected decoder. Each of the encoder
and decoder consists of 12 blocks, totaling 25 blocks within
the complete model, and each primary block integrates 4
ResNet layers and 2 Vision Transformers (ViTs) with cross-
attention and self-attention mechanisms. The ControlNet ar-
chitecture is applied at each encoder level of the U-Net, fea-
turing a trainable copy of 12 encoding blocks and 1 middle
block from the Stable Diffusion model. These 12 encod-
ing blocks includes: 64 × 64, 32 × 32, 16 × 16, 8 × 8,
with each resolution replicated 3 times. The resulting out-
puts are merged with the 12 skip connections and the single
middle block within the U-Net structure. We fine-tune both
ControlNet and Stable diffusion module on our relighting
dataset.

A.2. Training Dataset (Sec. 4)
In Fig. 4, we visualize the samples of our training dataset.
We use two kinds of dataset. One is from the data captured
from LightStage where the background images are rendered
from a HDR environment map. The ground truth shading,
albedo, relighted image, and background captured from a
small number of viewpoints (e.g., 6 views) are available.
The other one is from the data rendered from a synthetic
human model. We render the image of many 3D human
models from many views (e.g., 16 views) under different
lighting conditions defined by an environment map. We ob-
tain the approximated spherical harmonics coefficients from
the environment maps as ground-truth lighting parameters.
The ground truths for the mask, albedo, background, and re-
lit images also exist. We kindly note that our training data is
relatively smaller compared to other image-based relighting
methods as summarized in Fig. 2. For instance, Total Re-
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Figure 2. Left side: Training data scale comparisons; Right side: Breakdown of our training and evaluation dataset information.

lighting [7] captures data from 70 diverse subjects. Through
extensive lighting augmentation, the dataset expands to in-
clude approximately 8 million OLAT training examples;
GFR [4] needs 700 subjects and 4,600 HDR maps for train-
ing; and LPBR [11] is trained on 100 subjects with OLAT
and 2,908 HDR maps, resulting in 600K training samples.
Our training data is composed of 100K samples where the
detailed data analysis can be found in Fig. 2. We categorize
our training data based on gender, skin tone, and body cov-
erage (half-body and full-body). Each subject is captured
from 32 viewpoints under varying lighting conditions.

A.3. Add-on Temporal Motion Module Network
(Sec. 3.3)

Algorithm 1 Unsupervised Cycle-Training Motion Model-
ing for Temporal Consistency

1: Require: Video frames I; decoder D∗
2: Require: Relit frames Iϕ ← (D∗ ◦ Eb)
3: Initialize: Motion encoder Em; train step function T
4: Converged← False
5: While not Converged do
6: Itϕ ← D∗(E∗b(It, E∗l ({St

ϕ,B
t},Mt)))

7: Ĩtt−1 ← D∗(E∗b(Itϕ, Em(It−1,Mt−1)))

8: Converged← T(Ĩtt−1, I
t)

9: end while

We present the cycle-training algorithm for our tem-
poral lighting module in Alg.1, which serves as an ad-
ditional explanation for Sec. 3.3. Based on the hypoth-
esis: original video sequence inherently contains tempo-

ral lighting properties, which can be modeled by a tem-
poral module, conditioned on the relit version. We train
an add-on temporal module in an unsupervised way. Be-
fore the training process, we require relit video frames,
It → Itϕ. To generate the relit frame we process forward
image relighting: Itϕ ← D∗(E∗b(It; E∗l ({St

ϕ,B
t}; It,Mt))).

During each training iteration, as indicated in: Ĩtt−1 ←
D∗(E∗b(Itϕ; Em(It−1,Mt−1))), we condition on the current
relit frame and revert the lighting of the previous frame in
the original video back to match that of the original frame.
Implementation details. We train our model on 8 A100
GPUs with a total batch size of 32 (4 batches per GPU) and
a learning rate of 2×10−6. In the training phase for Lighting
ControlNet, we initialize the Stable diffusion base model
using the pre-trained weights from Instruct-Pix2Pix [1],
and copy the encoder block weights to serve as the initial
weights for the Lighting ControlNet part. Subsequently, we
fine-tune both ControlNet and Stable Diffusion module on
our relighting dataset

The training of our Motion ControlNet module occurs
subsequent to the lighting control training process. During
the training phase for motion control, we freeze the weights
of the Stable Diffusion base model. Then, we initialize the
weights of the Motion ControlNet by copying the encoder
block weights from the previously trained lighting Stable
Diffusion. Subsequently, we exclusively fine-tune the Mo-
tion ControlNet.

During the inference process, we adopt random noise
with a resolution of 4× 96× 96 as the initial input to gener-
ate the final relit image with a resolution of 768 × 768, and
for video testing, we apply the same noise across frame. We
apply DDIM [13] sampler with a timestep of 50 to gener-
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Figure 3. Left: Our shading estimation network, Right: Convolutional and deconvolutional blocks.

ate the final relit image. To utilize frame-by-frame inference
with recurrent blending, we extract control features from
the 12 encoding blocks of the ControlNet at corresponding
resolutions. Subsequently, we perform weighted blending
between control feature of previous and current frames.

A.4. Pixel-Aligned Neural Shading (Sec. 3.2)
While coarse shading Sϕ can be directly computed from
Spherical harmonics (SH) lighting parameters, we experi-
mentally found that using Sϕ obtained from a neural net-
work can improve human relighting and harmonization.
Specifically, low-order SH models tend to smooth out fine
details, resulting in overly diffuse shading. In contrast, a
neural network can recover high-frequency shading vari-
ations, enhancing realism by capturing subtle lighting ef-
fects. Moreover, the learned shading function improves ro-
bustness to normal map inaccuracies, reducing artifacts and
better preserving surface details. In this section, we intro-
duce an alternative way of having a coarse shading using
a neural network. To this end, we introduce a pixel-aligned
lighting estimation function f in Eq. 2 using a conditional
Unet framework.

It takes as inputs surface normal map N and target light-
ing parameters ϕ as conditions, and estimates the shading
Sϕ at each pixel lit by the target lighting. N is detected from
the input image I using the internal normal detector which
is composed of Unet architecture with pyramid vision trans-
former [15]. It learns many mixtures of ground-truth data
similar to [10], and thus, applicable to general scenes and
objects. Note that, since f does not take any visual data as
inputs, it does not introduce visual domain gaps. We train
the f(·) by comparing the input image and its reconstruc-
tion from the estimated shading:

Lrecon =
∑
i

∥Irecon − I∥22 =
∑
i

∥Sϕ ⊙AGT − I∥22

where Irecon is the reconstructed image based on the mul-
tiplication of Ṡϕ with the ground-truth albedo AGT ∈
Rw×h×3. Since we supervise the shading estimation net-

work in the image space, we can utilize other advanced
image-based supervision signals that can capture the phys-
ical plausibility of the local and global shading as follows:

Lshade = Lrecon + λvLvgg + λcLcGAN, (1)

where Lshade is the entire objective, and λ controls the
weight of each loss function. Lvgg is designed to penal-
ize the difference between the reconstructed image Irecon
and the input I in the deep feature space [5]. LcGAN is the
conditional adversarial loss [3] to evaluate the plausibility
of the reconstructed shading with respect to the geometric
structure where we use {N, I} as real and {N, Irecon} as
fake conditions to the patch discriminator [3].

Coarse Shading Estimation Network. In Fig. 6, we show
the general training pipeline for coarse lighting estimation
network. Fig. 3 describes the structure of our coarse shad-
ing estimation network. It takes as inputs the surface nor-
mal, foreground mask, and lighting parameters (i.e., Spher-
ical harmonics); and generates the shading map. An encoder
regresses the surface normal and mask to the latent space.
In this latent space, the lighting parameters are conditioned
where the vector parameters are copied along the spatial di-
rection to fit the same latent space as the one from the en-
coder. A decoder decodes them to generate a shading map.
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Figure 6. Training pipeline for coarse lighting estimation network.



B. Qualitative Results
B.1. Comparison with other baselines (Sec. 4)
We present the qualitative results of static image testing on
our synthetic dataset, compared with other baseline meth-
ods: DPR [21], GFR [4] and RHW [14] in Fig. 7. In our
evaluation, we perform full-body and multi-person tests on
our synthetic testing dataset, integrating background images
alongside Spherical harmonics for lighting control. We cal-
culate the average error on the entire testing dataset for
a comprehensive and generalizable relighting evaluation.
From visual quantitative results, our model shows more re-
alistic relighting results compared to other human relighting
models. This demonstrates our model’s robust performance
across diverse body part tests, indicating higher generaliz-
ability.

For evaluation, we validate our model along with other
baselines based on the divided categories: gender, and skin
color. We present the numerical evaluation in Tab. 1 and 2.
From the qualitative results, our method consistently out-
performs in all categories.

We further highlight that while all those methods are
limited to working on a specific body part (e.g., face or
portrait), our method works on general cases including the
scene with face, portrait, full body, and multi-person.

We present real data comparison results on the Light-
Stage dataset in Fig. 9 and comparisons on in-the-wild im-
ages in Fig. 8. Since current state-of-the-art (SOTA) base-
lines are not designed for comprehensive relighting, their
performance varies across different scenarios. In Fig. 8,
while DPR performs well for face relighting, its quality
significantly deteriorates in half-body scenarios, exhibiting
strong artifacts due to domain gaps. Notably, our framework
is the first to achieve comprehensive relighting, effectively
handling arbitrary body parts, including portraits, half-body,
full-body, and multi-body scenarios.

In Fig. 12 and Fig. 13, we present static real image re-
lighting and harmonization comparison results. For harmo-
nization, we use the most recent work, LPBR [11], as one
of the baselines: (1) DPR and RHW are only applicable
to image relighting with Spherical harmonics for lighting
control. For a fair comparison, we tested image relighting
with DPR, RHW, and GFR in Fig. 12, using a black back-
ground and target lighting parameters. We applied differ-
ent lighting conditions to various identities, including half-
body and full-body images. Although these methods can
achieve human relighting, their limited generalizability re-
sults in less fidelity during comprehensive testing. (2) Both
LPBR and GFR can perform harmonization. We retrained
the GFR model with our settings, enabling it to achieve
both harmonization and relighting, as shown in Fig. 13. The
higher generative prior of LPBR, which also uses a diffu-
sion model, results in noticeable distortions on the human
face. Although GFR can achieve both harmonization and

Method SH Bg Male Female
RHW ✓ ✗ 28.89 / 0.950 26.58 / 0.939
DPR ✓ ✗ 27.63 / 0.972 27.62 / 0.944
GFR ✓ ✓ 29.32 / 0.926 29.71 / 0.973
Ours ✓ ✓ 31.12 / 0.970 30.50 / 0.964

Table 1. Comparison of baseline methods on our full-body syn-
thetic static data, categorized by gender: (PSNR↑ / SSIM↑).

Method White Brown Dark
RHW 28.15 / 0.946 27.37 / 0.944 27.68 / 0.943
DPR 27.44 / 0.956 27.70 / 0.962 27.73 / 0.956
GFR 29.94 / 0.936 29.41 / 0.934 29.10 / 0.978
Ours 31.53 / 0.985 31.77 / 0.976 29.13 / 0.940

Table 2. Comparison of baseline methods on our full-body syn-
thetic static data, categorized by skin color: (PSNR↑ / SSIM↑).

relighting, it exhibits obvious color noise.
In Fig. 5, we present a new comparison with IC-

Light [20], which is the current state-of-the-art for light-
aware background harmonization. Both IC-Light and our
model are stable diffusion relighting models. IC-Light can
generate relit images with text prompts or background har-
monization. In the visual results, our harmonization seam-
lessly blends with the target background while preserving
the original identity. While IC-Light also achieves high-
quality background harmonization, however, it exhibits
greater identity distortion at the same image resolution, par-
ticularly in full-body and multi-person scenarios. In Fig. 14,
third graph, we show the user preference comparison among
our method, LPBR, and IC-Light. Most users selected our
method as the best result for all questions.

For video relighting comparison, we present qualitative
results in Fig. 11, in the main paper. We show frames relit
by our model tested on the synthetic video testing data. The
first row shows the composite input (albedo foreground and
background). In the second row, we show the ground truth
shading, and the third row displays the ground truth relit
image. The following rows show our relit frames, followed
by those from GFR, RHW, LPBR, and DPR. For real video
comparison, please refer to the supplementary demo video.

B.2. More qualitative results
We present additional qualitative results on the DeepFash-
ion dataset [6], as shown in Fig. 15. Given an input im-
age (left side) and target lighting parameters, our model
achieves the relighting results (second column). By chang-
ing the background image, our model can achieve both
background harmonization and relighting, as demonstrated
in columns 3 through 7.

Our model can achieve realistic relighting effects given a
target lighting, as well as background harmonization and a
combination of both. It effectively handles diverse subjects



with varying identities and poses, including both half-body
and full-body representations, demonstrating higher gener-
alizability.

B.3. Performance and rendering time
For the generation of the 768x768 pixel resolution image
with stable quality, 50 diffusion timesteps are required,
leading to around 10 seconds. For video sequences with re-
lighting using a motion module, each frame takes approxi-
mately 25 seconds on an A100 GPU. In theory, there is no
limit in the number of frames that our model can handle, the
video rendering time is highly proportional to the number of
frames, requiring around 2 hours for a video clip with 300
frames (768x768).

B.4. User study

Relighting Quality Identity-Perserving Quality Harmonization Quality 

Figure 14. User study results: Preferences between our model and
other relighting and harmonization models, including our general
object testing.

We performed a user study as shown in Fig. 14. For the re-
lighting model, we used three state-of-the-art methods: Di-
FaReli [9], GFR [4], and DPR [22]. For the harmonization
model, we chose LPBR [11]. Users participated in answer-
ing three questions:
• Q1: Which result most effectively achieves the relight-

ing?
• Q2: Which result most effectively preserves the person’s

identity (e.g., details and skin)?
• Q3: Which result best harmonizes with background

scenes?
We summarized the percentage of user preferences and

plotted the pie graph as shown in Fig. 14. Overall, users se-
lected our method as the best result for all questions, imply-
ing that our method is perceptually effective in achieving
reasonable relighting quality, preserving identity, and har-
monizing with the background.

C. Limitation and future work
In Fig. 10, we demonstrate some relighting results of the
person under shadow and highlights. While our method can
suppress shadows from self-occlusion during relighting, we
acknowledge that our model shows some weaknesses with
strong shadows, especially on human clothes (failure cases
in Fig. 10, right side). In fact, these strong shadows can be
further suppressed by existing shadow removal models such

as [2, 16, 18]. Additionally, incorporating various training
data augmentations for hard shadows can be explored as
future work to further enhance relighting quality. Our re-
lighting diffusion model requires significant computational
time. Recent advancements in diffusion models, such as the
One-Step Diffusion Model [17], may further enhance in-
ference efficiency. Significant noise on the detection (e.g.,
mask and surface normal) affects the temporal coherence,
and we admit that our results still have residual flickering.
Nevertheless, our approach surpasses other relighting meth-
ods in video quality across diverse domains. We believe that
advancing video prior models and expanding video datasets
will further enhance temporal coherence, which we plan to
explore in future work. Our task primarily focuses on hu-
man relighting, which limits the model’s ability to accu-
rately handle materials associated with general objects such
as cars, glass, and metallic surfaces. We acknowledge this
limitation and plan to explore this aspect in future work.

D. Broader Impact
As a positive impact, this work can be a useful tool for en-
hancing the lighting condition of the picture with humans,
which can be useful for contents creation in social media.
As a negative impact, similar to image synthesis, this work
can synthesize human appearance under different lighting
that may be used to fabricate fake videos and news.
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Figure 4. Training samples of the relighting data with half-body portraits (up) and simulation data with full-body images (bottom) .
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Figure 5. Comparison with harmonization methods (IC-Light). Left side is multi-person testing, right side is zoom in result.
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Figure 7. Qualitative comparisons conducted on synthetic data. From top to bottom: full-body testing, multi-person testing. The ground
truth data is displayed in the last column.
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Figure 8. Comparison with DPR on face and half-body relighting on Pexels [8] real images.
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Figure 9. Our LigtStage data testing (Left) and comparison with other relighting baselines (Right).
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Figure 10. Strong shadow testing results (left) and failure cases (right) on real images from Pexels [8].
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Figure 11. Video relighting comparison results on synthetic testing data: from left to right, we show comparison results for Scenario 1, 2,
3. From top to bottom, the first row shows the composite input (foreground human albedo composited with background image), the second
row shows the ground truth (GT) shading, and the third row shows the GT image.
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Figure 12. Real image comparisons with other human relighting approaches on the DeepFashion dataset [6]. We test on different identities
and body parts (full body, half body). Our model shows consistent and feasible relighting with varying target lighting parameters (Spherical
harmonics).
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Figure 13. We present real image comparisons with the harmonization method. Given a composite input image, our model can achieve
effective harmonization. When provided with target lighting parameters (Spherical harmonics), our model can achieve both background
harmonization and relighting. The top section displays the outputs of our background harmonization method compared to the results from
[11]. The lower section presents harmonization and relighting comparisons with [4]. Due to the higher generative prior of LPBR, noticeable
distortions are present on the human face. Although GFR can achieve both harmonization and relighting, it exhibits obvious color noise.
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Figure 15. Our model can achieve realistic relighting with lighting 1 and background harmonization.
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Figure 16. Our model can achieve realistic relighting with lighting 2 and background harmonization.
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Figure 17. Our model can achieve realistic relighting with lighting 3 and background harmonization.
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